3.3.89 \(\int \frac {x^{5/2}}{a+b x^2} \, dx\) [289]

Optimal. Leaf size=204 \[ \frac {2 x^{3/2}}{3 b}+\frac {a^{3/4} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} b^{7/4}}-\frac {a^{3/4} \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} b^{7/4}}-\frac {a^{3/4} \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{2 \sqrt {2} b^{7/4}}+\frac {a^{3/4} \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{2 \sqrt {2} b^{7/4}} \]

[Out]

2/3*x^(3/2)/b+1/2*a^(3/4)*arctan(1-b^(1/4)*2^(1/2)*x^(1/2)/a^(1/4))/b^(7/4)*2^(1/2)-1/2*a^(3/4)*arctan(1+b^(1/
4)*2^(1/2)*x^(1/2)/a^(1/4))/b^(7/4)*2^(1/2)-1/4*a^(3/4)*ln(a^(1/2)+x*b^(1/2)-a^(1/4)*b^(1/4)*2^(1/2)*x^(1/2))/
b^(7/4)*2^(1/2)+1/4*a^(3/4)*ln(a^(1/2)+x*b^(1/2)+a^(1/4)*b^(1/4)*2^(1/2)*x^(1/2))/b^(7/4)*2^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.11, antiderivative size = 204, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 8, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.533, Rules used = {327, 335, 303, 1176, 631, 210, 1179, 642} \begin {gather*} \frac {a^{3/4} \text {ArcTan}\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} b^{7/4}}-\frac {a^{3/4} \text {ArcTan}\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} b^{7/4}}-\frac {a^{3/4} \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{2 \sqrt {2} b^{7/4}}+\frac {a^{3/4} \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{2 \sqrt {2} b^{7/4}}+\frac {2 x^{3/2}}{3 b} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^(5/2)/(a + b*x^2),x]

[Out]

(2*x^(3/2))/(3*b) + (a^(3/4)*ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/(Sqrt[2]*b^(7/4)) - (a^(3/4)*ArcTa
n[1 + (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/(Sqrt[2]*b^(7/4)) - (a^(3/4)*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*S
qrt[x] + Sqrt[b]*x])/(2*Sqrt[2]*b^(7/4)) + (a^(3/4)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x]
)/(2*Sqrt[2]*b^(7/4))

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 303

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 327

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^n*((m - n + 1)/(b*(m + n*p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rubi steps

\begin {align*} \int \frac {x^{5/2}}{a+b x^2} \, dx &=\frac {2 x^{3/2}}{3 b}-\frac {a \int \frac {\sqrt {x}}{a+b x^2} \, dx}{b}\\ &=\frac {2 x^{3/2}}{3 b}-\frac {(2 a) \text {Subst}\left (\int \frac {x^2}{a+b x^4} \, dx,x,\sqrt {x}\right )}{b}\\ &=\frac {2 x^{3/2}}{3 b}+\frac {a \text {Subst}\left (\int \frac {\sqrt {a}-\sqrt {b} x^2}{a+b x^4} \, dx,x,\sqrt {x}\right )}{b^{3/2}}-\frac {a \text {Subst}\left (\int \frac {\sqrt {a}+\sqrt {b} x^2}{a+b x^4} \, dx,x,\sqrt {x}\right )}{b^{3/2}}\\ &=\frac {2 x^{3/2}}{3 b}-\frac {a \text {Subst}\left (\int \frac {1}{\frac {\sqrt {a}}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt {x}\right )}{2 b^2}-\frac {a \text {Subst}\left (\int \frac {1}{\frac {\sqrt {a}}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt {x}\right )}{2 b^2}-\frac {a^{3/4} \text {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt [4]{a}}{\sqrt [4]{b}}+2 x}{-\frac {\sqrt {a}}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt {x}\right )}{2 \sqrt {2} b^{7/4}}-\frac {a^{3/4} \text {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt [4]{a}}{\sqrt [4]{b}}-2 x}{-\frac {\sqrt {a}}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt {x}\right )}{2 \sqrt {2} b^{7/4}}\\ &=\frac {2 x^{3/2}}{3 b}-\frac {a^{3/4} \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{2 \sqrt {2} b^{7/4}}+\frac {a^{3/4} \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{2 \sqrt {2} b^{7/4}}-\frac {a^{3/4} \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} b^{7/4}}+\frac {a^{3/4} \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} b^{7/4}}\\ &=\frac {2 x^{3/2}}{3 b}+\frac {a^{3/4} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} b^{7/4}}-\frac {a^{3/4} \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} b^{7/4}}-\frac {a^{3/4} \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{2 \sqrt {2} b^{7/4}}+\frac {a^{3/4} \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{2 \sqrt {2} b^{7/4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.13, size = 119, normalized size = 0.58 \begin {gather*} \frac {4 b^{3/4} x^{3/2}+3 \sqrt {2} a^{3/4} \tan ^{-1}\left (\frac {\sqrt {a}-\sqrt {b} x}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}\right )+3 \sqrt {2} a^{3/4} \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}{\sqrt {a}+\sqrt {b} x}\right )}{6 b^{7/4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^(5/2)/(a + b*x^2),x]

[Out]

(4*b^(3/4)*x^(3/2) + 3*Sqrt[2]*a^(3/4)*ArcTan[(Sqrt[a] - Sqrt[b]*x)/(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x])] + 3*Sqr
t[2]*a^(3/4)*ArcTanh[(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x])/(Sqrt[a] + Sqrt[b]*x)])/(6*b^(7/4))

________________________________________________________________________________________

Maple [A]
time = 0.05, size = 116, normalized size = 0.57

method result size
derivativedivides \(\frac {2 x^{\frac {3}{2}}}{3 b}-\frac {a \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{4 b^{2} \left (\frac {a}{b}\right )^{\frac {1}{4}}}\) \(116\)
default \(\frac {2 x^{\frac {3}{2}}}{3 b}-\frac {a \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{4 b^{2} \left (\frac {a}{b}\right )^{\frac {1}{4}}}\) \(116\)
risch \(\frac {2 x^{\frac {3}{2}}}{3 b}-\frac {a \sqrt {2}\, \ln \left (\frac {x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )}{4 b^{2} \left (\frac {a}{b}\right )^{\frac {1}{4}}}-\frac {a \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )}{2 b^{2} \left (\frac {a}{b}\right )^{\frac {1}{4}}}-\frac {a \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )}{2 b^{2} \left (\frac {a}{b}\right )^{\frac {1}{4}}}\) \(143\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(5/2)/(b*x^2+a),x,method=_RETURNVERBOSE)

[Out]

2/3*x^(3/2)/b-1/4*a/b^2/(a/b)^(1/4)*2^(1/2)*(ln((x-(a/b)^(1/4)*x^(1/2)*2^(1/2)+(a/b)^(1/2))/(x+(a/b)^(1/4)*x^(
1/2)*2^(1/2)+(a/b)^(1/2)))+2*arctan(2^(1/2)/(a/b)^(1/4)*x^(1/2)+1)+2*arctan(2^(1/2)/(a/b)^(1/4)*x^(1/2)-1))

________________________________________________________________________________________

Maxima [A]
time = 0.49, size = 186, normalized size = 0.91 \begin {gather*} -\frac {a {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} + 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {\sqrt {a} \sqrt {b}} \sqrt {b}} + \frac {2 \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} - 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {\sqrt {a} \sqrt {b}} \sqrt {b}} - \frac {\sqrt {2} \log \left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {1}{4}} b^{\frac {3}{4}}} + \frac {\sqrt {2} \log \left (-\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {1}{4}} b^{\frac {3}{4}}}\right )}}{4 \, b} + \frac {2 \, x^{\frac {3}{2}}}{3 \, b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(5/2)/(b*x^2+a),x, algorithm="maxima")

[Out]

-1/4*a*(2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*a^(1/4)*b^(1/4) + 2*sqrt(b)*sqrt(x))/sqrt(sqrt(a)*sqrt(b)))/(sqr
t(sqrt(a)*sqrt(b))*sqrt(b)) + 2*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2)*a^(1/4)*b^(1/4) - 2*sqrt(b)*sqrt(x))/sqrt
(sqrt(a)*sqrt(b)))/(sqrt(sqrt(a)*sqrt(b))*sqrt(b)) - sqrt(2)*log(sqrt(2)*a^(1/4)*b^(1/4)*sqrt(x) + sqrt(b)*x +
 sqrt(a))/(a^(1/4)*b^(3/4)) + sqrt(2)*log(-sqrt(2)*a^(1/4)*b^(1/4)*sqrt(x) + sqrt(b)*x + sqrt(a))/(a^(1/4)*b^(
3/4)))/b + 2/3*x^(3/2)/b

________________________________________________________________________________________

Fricas [A]
time = 1.45, size = 165, normalized size = 0.81 \begin {gather*} \frac {12 \, b \left (-\frac {a^{3}}{b^{7}}\right )^{\frac {1}{4}} \arctan \left (-\frac {a^{2} b^{2} \sqrt {x} \left (-\frac {a^{3}}{b^{7}}\right )^{\frac {1}{4}} - \sqrt {-a^{3} b^{3} \sqrt {-\frac {a^{3}}{b^{7}}} + a^{4} x} b^{2} \left (-\frac {a^{3}}{b^{7}}\right )^{\frac {1}{4}}}{a^{3}}\right ) - 3 \, b \left (-\frac {a^{3}}{b^{7}}\right )^{\frac {1}{4}} \log \left (b^{5} \left (-\frac {a^{3}}{b^{7}}\right )^{\frac {3}{4}} + a^{2} \sqrt {x}\right ) + 3 \, b \left (-\frac {a^{3}}{b^{7}}\right )^{\frac {1}{4}} \log \left (-b^{5} \left (-\frac {a^{3}}{b^{7}}\right )^{\frac {3}{4}} + a^{2} \sqrt {x}\right ) + 4 \, x^{\frac {3}{2}}}{6 \, b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(5/2)/(b*x^2+a),x, algorithm="fricas")

[Out]

1/6*(12*b*(-a^3/b^7)^(1/4)*arctan(-(a^2*b^2*sqrt(x)*(-a^3/b^7)^(1/4) - sqrt(-a^3*b^3*sqrt(-a^3/b^7) + a^4*x)*b
^2*(-a^3/b^7)^(1/4))/a^3) - 3*b*(-a^3/b^7)^(1/4)*log(b^5*(-a^3/b^7)^(3/4) + a^2*sqrt(x)) + 3*b*(-a^3/b^7)^(1/4
)*log(-b^5*(-a^3/b^7)^(3/4) + a^2*sqrt(x)) + 4*x^(3/2))/b

________________________________________________________________________________________

Sympy [A]
time = 4.50, size = 124, normalized size = 0.61 \begin {gather*} \begin {cases} \tilde {\infty } x^{\frac {3}{2}} & \text {for}\: a = 0 \wedge b = 0 \\\frac {2 x^{\frac {3}{2}}}{3 b} & \text {for}\: a = 0 \\\frac {2 x^{\frac {7}{2}}}{7 a} & \text {for}\: b = 0 \\- \frac {a \log {\left (\sqrt {x} - \sqrt [4]{- \frac {a}{b}} \right )}}{2 b^{2} \sqrt [4]{- \frac {a}{b}}} + \frac {a \log {\left (\sqrt {x} + \sqrt [4]{- \frac {a}{b}} \right )}}{2 b^{2} \sqrt [4]{- \frac {a}{b}}} - \frac {a \operatorname {atan}{\left (\frac {\sqrt {x}}{\sqrt [4]{- \frac {a}{b}}} \right )}}{b^{2} \sqrt [4]{- \frac {a}{b}}} + \frac {2 x^{\frac {3}{2}}}{3 b} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(5/2)/(b*x**2+a),x)

[Out]

Piecewise((zoo*x**(3/2), Eq(a, 0) & Eq(b, 0)), (2*x**(3/2)/(3*b), Eq(a, 0)), (2*x**(7/2)/(7*a), Eq(b, 0)), (-a
*log(sqrt(x) - (-a/b)**(1/4))/(2*b**2*(-a/b)**(1/4)) + a*log(sqrt(x) + (-a/b)**(1/4))/(2*b**2*(-a/b)**(1/4)) -
 a*atan(sqrt(x)/(-a/b)**(1/4))/(b**2*(-a/b)**(1/4)) + 2*x**(3/2)/(3*b), True))

________________________________________________________________________________________

Giac [A]
time = 1.34, size = 178, normalized size = 0.87 \begin {gather*} \frac {2 \, x^{\frac {3}{2}}}{3 \, b} - \frac {\sqrt {2} \left (a b^{3}\right )^{\frac {3}{4}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}} + 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{2 \, b^{4}} - \frac {\sqrt {2} \left (a b^{3}\right )^{\frac {3}{4}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}} - 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{2 \, b^{4}} + \frac {\sqrt {2} \left (a b^{3}\right )^{\frac {3}{4}} \log \left (\sqrt {2} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{4}} + x + \sqrt {\frac {a}{b}}\right )}{4 \, b^{4}} - \frac {\sqrt {2} \left (a b^{3}\right )^{\frac {3}{4}} \log \left (-\sqrt {2} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{4}} + x + \sqrt {\frac {a}{b}}\right )}{4 \, b^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(5/2)/(b*x^2+a),x, algorithm="giac")

[Out]

2/3*x^(3/2)/b - 1/2*sqrt(2)*(a*b^3)^(3/4)*arctan(1/2*sqrt(2)*(sqrt(2)*(a/b)^(1/4) + 2*sqrt(x))/(a/b)^(1/4))/b^
4 - 1/2*sqrt(2)*(a*b^3)^(3/4)*arctan(-1/2*sqrt(2)*(sqrt(2)*(a/b)^(1/4) - 2*sqrt(x))/(a/b)^(1/4))/b^4 + 1/4*sqr
t(2)*(a*b^3)^(3/4)*log(sqrt(2)*sqrt(x)*(a/b)^(1/4) + x + sqrt(a/b))/b^4 - 1/4*sqrt(2)*(a*b^3)^(3/4)*log(-sqrt(
2)*sqrt(x)*(a/b)^(1/4) + x + sqrt(a/b))/b^4

________________________________________________________________________________________

Mupad [B]
time = 0.09, size = 54, normalized size = 0.26 \begin {gather*} \frac {2\,x^{3/2}}{3\,b}+\frac {{\left (-a\right )}^{3/4}\,\mathrm {atan}\left (\frac {b^{1/4}\,\sqrt {x}}{{\left (-a\right )}^{1/4}}\right )}{b^{7/4}}-\frac {{\left (-a\right )}^{3/4}\,\mathrm {atanh}\left (\frac {b^{1/4}\,\sqrt {x}}{{\left (-a\right )}^{1/4}}\right )}{b^{7/4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(5/2)/(a + b*x^2),x)

[Out]

(2*x^(3/2))/(3*b) + ((-a)^(3/4)*atan((b^(1/4)*x^(1/2))/(-a)^(1/4)))/b^(7/4) - ((-a)^(3/4)*atanh((b^(1/4)*x^(1/
2))/(-a)^(1/4)))/b^(7/4)

________________________________________________________________________________________